Evidence supporting the use of: Lactococcus lactis
For the health condition: Inflammatory Bowel Disorders

Links: Go back one page, Tool main page, Ingredients list, Health conditions list, Body systems list

Synopsis

Source of validity: Scientific
Rating (out of 5): 2

Lactococcus lactis is a probiotic bacterium commonly used in the dairy industry for fermentation, but it has also been investigated for its potential therapeutic effects in Inflammatory Bowel Disorders (IBD), including Crohn’s disease and ulcerative colitis. The justification for its use in IBD is rooted in scientific research, particularly in preclinical models. Several animal studies have demonstrated that genetically modified strains of L. lactis can deliver anti-inflammatory molecules (such as IL-10) directly to the gut mucosa, resulting in reduced inflammation and improved outcomes in models of colitis. There is also evidence that L. lactis can help modulate the immune response and maintain intestinal barrier function, both of which are important in IBD pathology.

However, human clinical trials are limited. Small pilot studies and phase I/II trials have evaluated the safety and feasibility of using recombinant L. lactis in patients with IBD. These studies suggest that the approach is safe and may have some beneficial effects, but the evidence remains preliminary. The overall level of evidence supporting the use of L. lactis in IBD is therefore modest and mostly based on animal and early-stage human data. More large-scale, well-controlled clinical trials are needed to establish efficacy. Thus, while there is scientific rationale and preliminary data, the evidence is not yet strong enough to warrant broad clinical adoption.

More about lactococcus lactis
More about Inflammatory Bowel Disorders

Other ingredients used for Inflammatory Bowel Disorders

2'-Fucosyllactose
akkermansia muciniphila
algal oil
aloe vera
alpha-glycosyl isoquercitrin
alpha-linolenic acid (ALA)
anthocyanins
bacillus clausii
bacillus subtilis
barberry
barley
beta caryophyllene
bifidobacterium bifidum
bifidobacterium breve
bifidobacterium infantis
bifidobacterium lactis
bifidobacterium longum
butyrate triglyceride
cat's claw
chamomile
citrus pectin
Coptis chinensis
turmeric
curcumin
dandelion
DHA (docosahexaeonic acid)
EPA (eicosapentaenoic acid)
fish oil
flaxseed
fructooligosaccharides (FOS)
inulin
isomalto-oligosaccharide
l-glutamine
lactobacillus brevis
lactobacillus casei
lactobacillus crispatus
lactobacillus fermentum
lactobacillus gasseri
lactobacillus lactis
lactobacillus paracasei
lactiplantibacillus plantarum
lactobacillus reuteri
lactobacillus rhamnosus
lactobacillus salivarius
lactococcus lactis
licorice root
luteolin
marshmallow
n-acetyl-glucosamine
n-acetyl-cysteine (NAC)
nicotinamide riboside
omega-3 fatty acids
pectin
peppermint oil
butyric acid
psyllium
reishi mushroom
saccharomyces boulardii
shiitake mushroom
slippery elm bark
specialized pro-resolving mediators (SPMs)
spirulina
streptococcus thermophilus
tributyrin
Urolithin A
vitamin C
vitamin D
vitamin D3
xylanase
xylooligosaccharides
zinc
bentonite
punarnava
rubia cordifolia
swertia
myrrh
algae
7,14-Hydroxy-Docosapentaenoic Acid
Apigenin
Andrographolide
Avocado
anthocyanidins
Acemannan
Arabinoxylan
Apocynin
Arctiin
Astragalin
Bifidobacterium
Bifidobacterium adolescentis
Brassica
Boswellic Acid
Butternut
Basidiomycota
Boswellia
Bacillus licheniformis
Bioflavonoids
Bifidobacterium animalis
Bacteria
Bifidobacteria
Bacillus
Cichoric acid
Cruciferous
Casticin
Celandine
Chirata
Cannabidiol
Enterococcus
Eicosapentaenoic Acid
Ellagitannin
Fiber