Evidence supporting the use of: Moringa
For the body system: Mitochondria
Synopsis
Source of validity: Scientific
Rating (out of 5): 2
Moringa (Moringa oleifera) has been traditionally used for a variety of health purposes, but its role in supporting mitochondrial function is based primarily on emerging scientific research rather than longstanding tradition. Preclinical studies suggest that moringa leaf extracts contain bioactive compounds such as polyphenols, flavonoids, and vitamins (notably vitamin C and E), which possess antioxidant properties. These antioxidants may help protect mitochondria from oxidative stress—a known contributor to mitochondrial dysfunction—by neutralizing reactive oxygen species (ROS).
Some animal and in vitro studies have demonstrated that moringa supplementation can enhance mitochondrial biogenesis, improve mitochondrial membrane potential, and reduce markers of oxidative stress in various tissues, including the liver and brain. For instance, a few rodent studies reported improved mitochondrial enzyme activities and reduced lipid peroxidation following moringa supplementation, suggesting a supportive effect on mitochondrial health.
However, direct clinical evidence in humans is lacking. Most data come from animal models or cell culture studies, and there are currently no robust human trials specifically evaluating moringa's effect on mitochondrial function. Therefore, while there is a scientific basis for its use rooted in preclinical data, the overall evidence supporting moringa for mitochondrial support in humans remains limited.
Other ingredients that support Mitochondria
7-Keto-DHEAacetyl l-carnitine
adenosine 5-triphosphate disodium (ATP)
alpha-ketoglutarate (AKG)
amino acids
amylopectin
ashwagandha
bovine liver
caffeine
catechins
citicoline
coenzyme Q10 (CoQ10)
coffee fruit
copper
creatine monohydrate
d-alpha tocopherol
epigallocatechin gallate (EGCG)
fisetin
fish oil
flavonols
fructose
fruit and vegetable blend (proprietary)
glycerophosphocholine (GPC)
gooseberry
grape
greens blend (proprietary)
hesperetin
knotweed
krill oil
l-carnitine
l-carnosine
l-citrulline
l-glutathione
l-glycine
l-taurine
lentinula edodes mycelia
linoleic acid (LA)
liquid liver fractions
luteolin
mackerel
magnesium
maitake mushroom
malic acid
maltodextrin
maltose
manganese
maqui berry
marine lipid
matcha
medium chain triglycerides (MCT)
melatonin
moringa
niacin (vitamin B3)
niacinamide (vitamin B3)
nicotinamide riboside
oleanolic acid
pantethine
pantothenic acid (vitamin B5)
phenolic acids
phosphatidylcholine
pyridoxal-5-phosphate (P-5-P)
pyrroloquinoline disodium salt
quercetin
quinoa
resveratrol
rhodiola
riboflavin (vitamin B2)
rosemary
sardines
selenium
black ginger
spinach
starch
stearic acid
strawberry
succinic acid
sulforaphane glucosinolate
thiamin (vitamin B1)
tocotrienols
trans-geranylgeraniol
trans-pterostilbene
tributyrin
turkey tail mushroom
ubiquinol
Urolithin A
vegetable and fruit blend (proprietary)
vitamin B
vitamin B
vitamin D3
water
watermelon
β-nicotinamide mononucleotide (NMN)
lingzhi
cistanche
ganoderma
electrolytes blend (proprietary)
polyphenols
trace minerals
fulvic acid
goji berry
herbal blend (proprietary)
algae
AMP-activated protein kinase (AMPK)
thyroid substance
ashitaba
1,3,7-Trimethylpurine-2,6-dione
5-Aminoimidazole-4-Carboxamide Ribonucleotide
Alpha polylactate
Apigenin
Alpha-Lipoic Acid
Ampelopsin
adenosine triphosphate (ATP)
Animal protein
Beta-hydroxybutyrate
Beef liver
berry
Caffeic Acid
Centrophenoxine
Camellia sinensis
Cardarine
Cocarboxylase
Capsinoids
Coenzyme A
Cardiolipin
Cyanidin
Capsiate
Chocolate
Creatine
C-Phycocyanin
Dihydrolipoic Acid
D-Ribose
Eriocitrin
Ergothioneine
glucose
Ketone Salts